The ⚀ennqua·lengthel, or ⚀global·length

Quantitylength
Formal name

⚀ennqua·lengthel
⚀ennqua·widthel
⚀ennqua·heightel

Formal abbr⚀e↑lgℓ
⚀e↑wdℓ
⚀e↑hgtℓ 
Colloquial name⚀global·length
⚀global·width
⚀global·height 
Colloquial abbr⚀glb·lg
⚀glb·wd
⚀glb·hgt
Derivation⚀velocitel × ⚀ennqua·timel 
Derivation abbr⚀veℓ × ⚀e↑tmℓ
TGM equiv

≈ 4 septqua·Grafut

TGM equiv abbr≈ 4 s↑Gf
SI & USC equiv

= 3ᘔ,600,000z|138,848,256foot
= 13,600,000z|3,856,896yard
= 10,497,249.7249z|3,085,516.8English ell
= 13,275.0275z|26,297.018
mile
= 50ᘔ5.80ᘔ5z|8,765.672league
= 42,320,948.4288meter
= 42,320.9484288kilometer
 

scaling01:04:+:09:1.0

The ninth dozenal power of the ⚀lengthel, the ennqua·lengthel (abbreviated e↑lgℓ) is one dozen ⚀continental·lengths, or one gross regional·lengths, or one galore ⚀itineral·lengths, or one dozen galore ⚀dromal·lengths, or one bigalore ⚀morsel·lengths. An object moving at one ⚀velocitel would take a one galore days to travel this distance. In SI units, this comes out to about 42,320.9484288d|~20,58.Ɛz kilometers. In USC units, this is exactly 26,297.018d|13,275.0275z miles. This is a bit more than the circumference of the Earth. Accordingly, the proposed colloquial name this unit is the ⚀global·length.

If drawn as a circle around the Earth's center of mass, this length would correspond to an orbit at an altitude of about 368.1d|268.2z kilometers, which is right in the middle of the Low Earth Orbit range. If plotted as the radius of a circle drawn around the Earth's center, it be just slightly larger than the geostationary orbit.

See Also