Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

Version 1 Next »

The table below lists quantities that appear in the equations of natural law related to electromagnetic phenomena. For each, the table includes the typical formulaic symbol for the quantity, the conventional terminology used to refer to it, in some cases alternative terminology which Primel introduces, along with the coherent unit provided by SI, the coherent unit (quantitel) provided by Primel, and the conversion from the Primel unit to SI units.

Quantity Symbol

Conventional Terminology
Primel Terminology

SI Unit
Primel Unit
Primel conversion to SI

electric charge
quantity of electricity

coulomb = C
⚀electrel
≈ 58.3547142537770d μC

magnetic pole strength
magnetic charge
quantity of magnetism

C·m·s−1 = A·m
⚀magnetel = ⚀electrel × ⚀velocitel
≈ (1.65414607212326×10−5)d A·m

electric current

ampere = A
⚀currentel = ⚀electrel / ⚀timel = ⚀magnetel / ⚀lengthel
≈ 2.01673892461053d mA

magnetic scalar potential
magnetism gradient

alternation

A·s−1 = C·s−2
⚀alternationel = ⚀currentel / ⚀timel = ⚀electrel / ⚀timel2
≈ (6.96984972345401×10−2)d A·s−1

electric displacement field
free electrization

C·m−2
⚀electrizationel = ⚀areanelic·electrel = ⚀electrel / ⚀areanel
≈ (8.67416326062990×10−1)d C·m−2

polarization density
material electrization

magnetizing field
free magnetization

(A·m)·m−2 = A·m−1
⚀magnetizationel = ⚀areanelic·magnetel = ⚀magnetel / ⚀areanel
≈ (2.45881301451119×10−1)d A·m−1

bound magnetization
material magnetization

charge density
electrodensity

C·m−3
⚀electrodensitel = ⚀volumelic·electrel = ⚀electrel / ⚀volumel
≈ (1.05755609984820×102)d C·m−3

electric displacement gradient
free electrodensity

polarization density gradient
material electrodensity

current density
magnetodensity

(A·m)·m−3 = A·m−2
⚀magnetodensitel = ⚀volumelic·magnetel = ⚀magnetel / ⚀volumel
≈ 2.99779082287369×101 A·m−2

magnetizing field gradient
free magnetodensity

bound magnetization gradient
material magnetodensity

electric field
electric force

N·C−1 = V·m−1
⚀electrelic·forcel = ⚀forcel / ⚀electrel
≈ (9.26309397578308×101)d N·C−1

magnetic flux density
magnetic force

tesla = T = N·(A·m)−1 = Wb·m−2 = kg·s−2·A−1
⚀magnetelic·forcel = ⚀forcel / ⚀magnetel
≈ (3.26782024376396×102)d T

electric flux
electric influence

N·m2·C−1 = V·m
⚀electrelic·influencel = ⚀influencel / ⚀electrel = ⚀forcel × ⚀areanel / ⚀electrel
≈ (6.23166968180227×10−3)d V·m

magnetic flux
magnetic influence

weber = Wb = N·m2·(A·m)−1 = J·A−1 = V·s
⚀magnetelic·influencel = ⚀influencel / ⚀magnetel = ⚀forcel × ⚀areanel / ⚀magnetel
≈ (2.19839897898932×10−2)d Wb

electric potential
electric potential

volt = V = J·C−1 = W·A−1= A·Ω
⚀electrelic·potentialel = ⚀εpotel = ⚀potentialel / ⚀electrel
≈ (7.59766687138707×10−1)d V

magnetic vector potential
magnetic potential

J·(A·m)−1 = N·A−1 = V·s = Wb·m−1 = T·m
⚀magnetelic·potentialel = ⚀μpotel = ⚀potentialel / ⚀magnetel
≈ 2.68029339577057d Wb·m−1

electric field divergence
electric tension

N·m−1·C−1 = V·m−2
⚀electrelic·tensionel = ⚀tensionel / ⚀electrel = ⚀forcel / ⚀lengthel / ⚀electrel
≈ (1.12935867624483×104)d N·m−1·C−1

electric field curl
electric tension

electric field Laplacian
electric pressure

N·m−2·C−1 = Pa·C−1 = V·m−3
⚀electrelic·pressurel = ⚀pressurel / ⚀electrel = ⚀forcel / ⚀areanel / ⚀electrel
≈ 1.37691685191140×106 Pa·C−1

magnetic field divergence
magnetic tension

T·m−1 = N·m−1·(A·m)−1 = Wb·m−3 = kg·m−1·s−2·A−1
⚀magnetelic·tensionel = ⚀tensionel / ⚀magnetel = ⚀forcel / ⚀lengthel / ⚀magnetel
≈ (3.98413440946584×104)d T·m−1

magnetic field curl
magnetic tension

magnetic field Laplacian
magnetic pressure

T·m−2 = N·m−2·(A·m)−1 = kg·m−2·s−2·A−1
⚀magnetelic·pressurel = ⚀pressurel / ⚀magnetel = ⚀forcel / ⚀areanel / ⚀magnetel
≈ (4.85746638695353×106)d T·m−2

elastance

F−1 = J·C−2
⚀elastancel
≈ 1.30197996315187×104 F−1

capacitance

F = C2·J−1
⚀capacitancel
≈ 7.68060975054616×10−5 F

inductance

henry = H = J·A−2 = Wb·A−1
⚀inductancel
≈ (1.09007613834491×101)d H

reluctance

H−1 = J−1·A2 = Wb−1·A
⚀reluctancel
≈ (9.17367113014993×10−2)d H−1

reciprocal permittivity
elastivity

m·F−1 = N·m2·C−2
⚀elastivitel = ⚀squarelectrelic·influencel
≈ (1.06789481561019×102)d m·F−1

permittivity
capacitivity

F·m−1 = N−1·m−2·C2
⚀capacitivitel = ⚀influencelic·squarelectrel
≈ (9.36421813630215×10−3)d F·m−1

permeability
inductivity

H·m−1 = N·m2·(A·m)−2 = N·A−2
⚀inductivitel = ⚀squaremagnetelic·influencel
≈ (1.32902348591708×103)d H·m−1

reciprocal permeability
reluctivity

m·H−1 = N−1·m−2·(A·m)2 = N−1·A2
⚀reluctivitel = ⚀influencelic·squaremagnetel
≈ (7.52432150820839×10−4)d m·H−1

resistance

ohm = Ω
⚀resistancel
≈ (3.76730313412×102)d Ω

reactance

ohm = Ω
⚀reactancel
≈ (3.76730313412×102)d Ω

impedance

ohm = Ω
impedancel
≈ (3.76730313412×102)d Ω

conductance

siemens = S
⚀conductancel
≈ (2.65441872978875×10−3)d S

susceptance

siemens = S
⚀susceptancel
≈ (2.65441872978875×10−3)d S

admittance

siemens = S
⚀admittancel
≈ (2.65441872978875×10−3)d S

resistivity

Ω·m
⚀resistivitel = ⚀resistancel × ⚀lengthel
≈ 3.08997342479801d Ω·m

conductivity

S·m−1
⚀conductivitel = ⚀rconductancel / ⚀lengthel
≈ (3.23627378790603×10−1)d S·m−1

  • No labels