Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Mathblock
anchor
alignmentleft
\mathbf{F}_m = q_0\left(\mathbf{v}_0 \times \mathbf{B} \right)
Mathblock
anchor
alignmentleft
\mathbf{B}  = \mu_0\  \int \frac{I\mathrm{d}q\mathbf{\ellv} \times \hat{\mathbf{r}}}{\sigma r^2}  = \mu_0 \frac{q\mathbf{v} \times }

where:

  • Mathinline
    body\mathbf{F}_m
    is the force induced by magnetic field
    Mathinline
    body\mathbf{B}
    on test charge
    Mathinline
    body\displaystyle q_0
    that is moving with velocity
    Mathinline
    body\displaystyle \mathbf{v}_0

  • Mathinline
    body\mathbf{B}
    is the magnetic field generated by charge
    Mathinline
    body\displaystyle q
    moving with velocity
    Mathinline
    body\displaystyle \mathbf{v}

  • Mathinline
    body\displaystyle \mathbf{r}
    is the displacement vector to moving charge
    Mathinline
    body\displaystyle q

    • Mathinline
      body\displaystyle \hat{ \mathbf{r}}
      is the unit vector in the direction of
      Mathinline
      body\displaystyle \mathbf{r}

    • Mathinline
      bodyr = \left| \mathbf{r}\right|
      is the length of
      Mathinline
      body\displaystyle \mathbf{

...

    • r}

  • Mathinline
    body\sigma = 2\tau = 4\pi

  • Mathinline
    body\mu_0
    is the “vacuum inductivity” (vacuum permeability)

Page Properties Report
firstcolumnPage
headingsFormal name,Formal abbr,TGM equiv,SI equiv
sortByscaling
cqllabel in ( "mforce·quantitel" , "mforce·unqual" , "mforce·uncial" ) and space = currentSpace ( )

...