...
Mathblock | ||||
---|---|---|---|---|
| ||||
\mathbf{F}_m = q_0\left(\mathbf{v}_0 \times \mathbf{B} \right) |
Mathblock | ||||
---|---|---|---|---|
| ||||
\mathbf{B} = \mu_0\ \int \frac{I\mathrm{d}q\mathbf{\ellv} \times \hat{\mathbf{r}}}{\sigma r^2} = \mu_0\ \int \frac{I\mathrm{d}\mathbf{\ell} \times } |
where:
is the force induced by magnetic fieldMathinline body \mathbf{F}_m
on test chargeMathinline body \mathbf{B}
that is moving with velocityMathinline body \displaystyle q_0 Mathinline body \displaystyle \mathbf{v}_0
is the magnetic field generated by chargeMathinline body \mathbf{B}
moving with velocityMathinline body \displaystyle q Mathinline body \displaystyle \mathbf{v}
is the displacement vector to moving chargeMathinline body \displaystyle \mathbf{r} Mathinline body \displaystyle q
is the unit vector in the direction ofMathinline body \displaystyle \hat{ \mathbf{r}} Mathinline body \displaystyle \mathbf{r}
is the length ofMathinline body r = \left| \mathbf{r}\right| Mathinline body \displaystyle \mathbf{
...
r}
Mathinline body \sigma = 2\tau = 4\pi
is the “vacuum inductivity” (vacuum permeability)Mathinline body \mu_0
Page Properties Report | ||||||||
---|---|---|---|---|---|---|---|---|
|
...