Quantity Symbol | Conventional Terminology Primel Terminology | SI Unit Primel Unit Primel conversion to SI |
---|
| electric charge quantity of electricity | coulomb = C ⚀electrel ≈ 58.3547142537770dμC |
Mathinline |
---|
body | \mathbf{q}_\mathrm{m} = q\mathbf{v} |
---|
|
| magnetic pole strength magnetic charge quantity of magnetism | C·m·s−1 = A·m ⚀magnetel = ⚀electrel × ⚀velocitel ≈ (1.65414607212326×10−5)d A·m |
| electric current | ampere = A ⚀currentel = ⚀electrel / ⚀timel = ⚀magnetel / ⚀lengthel ≈ 2.01673892461053d mA |
| magnetic scalar potential magnetism gradient |
Mathinline |
---|
body | \displaystyle\frac{\partial I}{\partial t} |
---|
|
| alternation | A·s−1 = C·s−2 ⚀alternationel = ⚀currentel / ⚀timel = ⚀electrel / ⚀timel2 ≈ (6.96984972345401×10−2)dA·s−1 |
| electric displacement field free electrization | C·m−2 ⚀electrizationel = ⚀areanelic·electrel = ⚀electrel / ⚀areanel ≈ (8.67416326062990×10−1)d C·m−2 |
| polarization density material electrization |
| magnetizing field free magnetization | (A·m)·m−2 = A·m−1 ⚀magnetizationel = ⚀areanelic·magnetel = ⚀magnetel / ⚀areanel ≈ (2.45881301451119×10−1)d A·m−1 |
| bound magnetization material magnetization |
| charge density electrodensity | C·m−3 ⚀electrodensitel = ⚀volumelic·electrel = ⚀electrel / ⚀volumel ≈ (1.05755609984820×102)d C·m−3 |
Mathinline |
---|
body | \nabla\cdot\mathbf{D} |
---|
|
| electric displacement gradientdivergence free electrodensity |
Mathinline |
---|
body | \nabla\cdot\mathbf{P} |
---|
|
| polarization density gradientdivergence material electrodensity |
| current density magnetodensity | (A·m)·m−3 = A·m−2 ⚀magnetodensitel = ⚀volumelic·magnetel = ⚀magnetel / ⚀volumel ≈ 2.99779082287369×101 A·m−2 |
Mathinline |
---|
body | \nabla\cdot\mathbf{H} |
---|
|
| magnetizing field gradientdivergence free magnetodensity |
Mathinline |
---|
body | \nabla\cdot\mathbf{M} |
---|
|
| bound magnetization gradientdivergence material magnetodensity |
| electric field electric force | N·C−1 = V·m−1 ⚀electrelic·forcel = ⚀forcel / ⚀electrel ≈ (9.26309397578308×101)dN·C−1 |
| magnetic flux density magnetic force | tesla = T = N·(A·m)−1 = Wb·m−2 = kg·s−2·A−1 ⚀magnetelic·forcel = ⚀forcel / ⚀magnetel ≈ (3.26782024376396×102)dT |
Mathinline |
---|
body | \displaystyle\Phi_\mathrm{E} |
---|
|
| electric flux electric influence | N·m2·C−1 = V·m ⚀electrelic·influencel = ⚀influencel / ⚀electrel = ⚀forcel × ⚀areanel / ⚀electrel ≈ (6.23166968180227×10−3)d V·m |
| magnetic flux magnetic influence | weber = Wb = N·m2·(A·m)−1 = J·A−1 = V·s ⚀magnetelic·influencel = ⚀influencel / ⚀magnetel = ⚀forcel × ⚀areanel / ⚀magnetel ≈ (2.19839897898932×10−2)d Wb |
| electric potential electric potential | volt = V = J·C−1 = W·A−1= A·Ω ⚀electrelic·potentialel = ⚀εpotel = ⚀potentialel / ⚀electrel ≈ (7.59766687138707×10−1)d V |
| magnetic vector potential magnetic potential | J·(A·m)−1 = N·A−1 = V·s = Wb·m−1 = T·m ⚀magnetelic·potentialel = ⚀μpotel = ⚀potentialel / ⚀magnetel ≈ 2.68029339577057d Wb·m−1 |
|
Mathinline |
---|
body | \nabla\cdot\mathbf{E} |
---|
|
| electric field divergence electric tension | N·m−1·C−1 = V·m−2 ⚀electrelic·tensionel = ⚀tensionel / ⚀electrel = ⚀forcel / ⚀lengthel / ⚀electrel ≈ (1.12935867624483×104)d N·m−1·C−1 |
Mathinline |
---|
body | \nabla\times\mathbf{E} |
---|
|
| electric field curl electric tension |
| electric field Laplacian electric pressure | N·m−2·C−1 = Pa·C−1 = V·m−3 ⚀electrelic·pressurel = ⚀pressurel / ⚀electrel = ⚀forcel / ⚀areanel / ⚀electrel ≈ 1.37691685191140×106 Pa·C−1 |
Mathinline |
---|
body | \nabla\cdot\mathbf{B} |
---|
|
| magnetic field divergence magnetic tension | T·m−1 = N·m−1·(A·m)−1 = Wb·m−3 = kg·m−1·s−2·A−1 ⚀magnetelic·tensionel = ⚀tensionel / ⚀magnetel = ⚀forcel / ⚀lengthel / ⚀magnetel ≈ (3.98413440946584×104)dT·m−1 |
Mathinline |
---|
body | \nabla\times\mathbf{B} |
---|
|
| magnetic field curl magnetic tension |
| magnetic field Laplacian magnetic pressure | T·m−2 = N·m−2·(A·m)−1 = kg·m−2·s−2·A−1 ⚀magnetelic·pressurel = ⚀pressurel / ⚀magnetel = ⚀forcel / ⚀areanel / ⚀magnetel ≈ (4.85746638695353×106)dT·m−2 |
| elastance | F−1 = J·C−2 ⚀elastancel ≈ 1.30197996315187×104 F−1 |
| capacitance | farad = F = C2·J−1 ⚀capacitancel ≈ 7.68060975054616×10−5 F |
| inductance | henry = H = J·A−2 = Wb·A−1 ⚀inductancel ≈ (1.09007613834491×101)d H |
| reluctance | H−1 = J−1·A2 = Wb−1·A ⚀reluctancel ≈ (9.17367113014993×10−2)d H−1 |
Mathinline |
---|
body | \overline{\varepsilon} |
---|
|
| reciprocal permittivity elastivity | m·F−1 = N·m2·C−2 ⚀elastivitel = ⚀squarelectrelic·influencel ≈ (1.06789481561019×102)d m·F−1 |
| permittivity capacitivity | F·m−1 = N−1·m−2·C2 ⚀capacitivitel = ⚀influencelic·squarelectrel ≈ (9.36421813630215×10−3)d F·m−1 |
| permeability inductivity | H·m−1 = N·m2·(A·m)−2 = N·A−2 ⚀inductivitel = ⚀squaremagnetelic·influencel ≈ (1.32902348591708×103)d H·m−1 |
| reciprocal permeability reluctivity | m·H−1 = N−1·m−2·(A·m)2 = N−1·A2 ⚀reluctivitel = ⚀influencelic·squaremagnetel ≈ (7.52432150820839×10−4)d m·H−1 |
| resistance | ohm = Ω ⚀resistancel ≈ (3.76730313412×102)d Ω |
| reactance | ohm = Ω ⚀reactancel ≈ (3.76730313412×102)d Ω |
| impedance | ohm = Ω impedancel ≈ (3.76730313412×102)d Ω |
| conductance | siemens = S ⚀conductancel ≈ (2.65441872978875×10−3)d S |
| susceptance | siemens = S ⚀susceptancel ≈ (2.65441872978875×10−3)d S |
| admittance | siemens = S ⚀admittancel ≈ (2.65441872978875×10−3)d S |
| resistivity | Ω·m ⚀resistivitel = ⚀resistancel × ⚀lengthel ≈ 3.08997342479801d Ω·m |
| conductivity | S·m−1 ⚀conductivitel = ⚀rconductancel / ⚀lengthel ≈ (3.23627378790603×10−1)d S·m−1 |