Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

The table below lists quantities that appear in the equations of natural law related to electromagnetic phenomena. For each, the table includes the typical formulaic symbol for the quantity, the conventional terminology used to refer to it, in some cases alternative terminology which Primel introduces, along with the coherent unit provided by SI, the coherent unit (quantitel) provided by Primel, and the conversion from the Primel unit to SI units.

Quantity Symbol

Conventional Terminology
Primel Terminology

SI Unit
Primel Unit
Primel conversion to SI

Mathinline
bodyq

electric charge
quantity of electricity

coulomb = C
⚀electrel
≈ 58.3547142537770dμC

Mathinline
body\mathbf{q}_\mathrm{m} = q\mathbf{v}

magnetic pole strength
magnetic charge
quantity of magnetism

C·m·s−1 = A·m
⚀magnetel = ⚀electrel × ⚀velocitel
≈ (1.65414607212326×10−5)d A·m

Mathinline
bodyI

electric current

ampere = A
⚀currentel = ⚀electrel / ⚀timel = ⚀magnetel / ⚀lengthel
≈ 2.01673892461053d mA

Mathinline
body\psi

magnetic scalar potential
magnetism gradient

Mathinline
body\displaystyle\frac{\partial I}{\partial t}

alternation

A·s−1 = C·s−2
⚀alternationel = ⚀currentel / ⚀timel = ⚀electrel / ⚀timel2
≈ (6.96984972345401×10−2)dA·s−1

Mathinline
body\mathbf{D}

electric displacement field
free electrization

C·m−2
⚀electrizationel = ⚀areanelic·electrel = ⚀electrel / ⚀areanel
≈ (8.67416326062990×10−1)d C·m−2

Mathinline
body\mathbf{P}

polarization density
material electrization

Mathinline
body\mathbf{H}

magnetizing field
free magnetization

(A·m)·m−2 = A·m−1
⚀magnetizationel = ⚀areanelic·magnetel = ⚀magnetel / ⚀areanel
≈ (2.45881301451119×10−1)d A·m−1

Mathinline
body\mathbf{M}

bound magnetization
material magnetization

Mathinline
body\rho

charge density
electrodensity

C·m−3
⚀electrodensitel = ⚀volumelic·electrel = ⚀electrel / ⚀volumel
≈ (1.05755609984820×102)d C·m−3

Mathinline
body\nabla\cdot\mathbf{D}

electric displacement gradientdivergence
free electrodensity

Mathinline
body\nabla\cdot\mathbf{P}

polarization density gradientdivergence
material electrodensity

Mathinline
body\mathbf{J}

current density
magnetodensity

(A·m)·m−3 = A·m−2
⚀magnetodensitel = ⚀volumelic·magnetel = ⚀magnetel / ⚀volumel
≈ 2.99779082287369×101 A·m−2

Mathinline
body\nabla\cdot\mathbf{H}

magnetizing field gradientdivergence
free magnetodensity

Mathinline
body\nabla\cdot\mathbf{M}

bound magnetization gradientdivergence
material magnetodensity

Mathinline
body\mathbf{E}

electric field
electric force

N·C−1 = V·m−1
⚀electrelic·forcel = ⚀forcel / ⚀electrel
≈ (9.26309397578308×101)dN·C−1

Mathinline
body\mathbf{B}

magnetic flux density
magnetic force

tesla = T = N·(A·m)−1 = Wb·m−2 = kg·s−2·A−1
⚀magnetelic·forcel = ⚀forcel / ⚀magnetel
≈ (3.26782024376396×102)dT

Mathinline
body\displaystyle\Phi_\mathrm{E}

electric flux
electric influence

N·m2·C−1 = V·m
⚀electrelic·influencel = ⚀influencel / ⚀electrel = ⚀forcel × ⚀areanel / ⚀electrel
≈ (6.23166968180227×10−3)d V·m

Mathinline
body\Phi_\mathrm{B}

magnetic flux
magnetic influence

weber = Wb = N·m2·(A·m)−1 = J·A−1 = V·s
⚀magnetelic·influencel = ⚀influencel / ⚀magnetel = ⚀forcel × ⚀areanel / ⚀magnetel
≈ (2.19839897898932×10−2)d Wb

Mathinline
bodyV

electric potential
electric potential

volt = V = J·C−1 = W·A−1= A·Ω
⚀electrelic·potentialel = ⚀εpotel = ⚀potentialel / ⚀electrel
≈ (7.59766687138707×10−1)d V

Mathinline
body\mathbf{A}

magnetic vector potential
magnetic potential

J·(A·m)−1 = N·A−1 = V·s = Wb·m−1 = T·m
⚀magnetelic·potentialel = ⚀μpotel = ⚀potentialel / ⚀magnetel
≈ 2.68029339577057d Wb·m−1

Mathinline
body\mu_0\psi

Mathinline
body\nabla\cdot\mathbf{E}

electric field divergence
electric tension

N·m−1·C−1 = V·m−2
⚀electrelic·tensionel = ⚀tensionel / ⚀electrel = ⚀forcel / ⚀lengthel / ⚀electrel
≈ (1.12935867624483×104)d N·m−1·C−1

Mathinline
body\nabla\times\mathbf{E}

electric field curl
electric tension

Mathinline
body\nabla^2\mathbf{E}

electric field Laplacian
electric pressure

N·m−2·C−1 = Pa·C−1 = V·m−3
⚀electrelic·pressurel = ⚀pressurel / ⚀electrel = ⚀forcel / ⚀areanel / ⚀electrel
≈ 1.37691685191140×106 Pa·C−1

Mathinline
body\nabla\cdot\mathbf{B}

magnetic field divergence
magnetic tension

T·m−1 = N·m−1·(A·m)−1 = Wb·m−3 = kg·m−1·s−2·A−1
⚀magnetelic·tensionel = ⚀tensionel / ⚀magnetel = ⚀forcel / ⚀lengthel / ⚀magnetel
≈ (3.98413440946584×104)dT·m−1

Mathinline
body\nabla\times\mathbf{B}

magnetic field curl
magnetic tension

Mathinline
body\nabla^2\mathbf{B}

magnetic field Laplacian
magnetic pressure

T·m−2 = N·m−2·(A·m)−1 = kg·m−2·s−2·A−1
⚀magnetelic·pressurel = ⚀pressurel / ⚀magnetel = ⚀forcel / ⚀areanel / ⚀magnetel
≈ (4.85746638695353×106)dT·m−2

Mathinline
bodyS

elastance

F−1 = J·C−2
⚀elastancel
≈ 1.30197996315187×104 F−1

Mathinline
bodyC

capacitance

farad = F = C2·J−1
⚀capacitancel
≈ 7.68060975054616×10−5 F

Mathinline
bodyL

inductance

henry = H = J·A−2 = Wb·A−1
⚀inductancel
≈ (1.09007613834491×101)d H

Mathinline
body\mathcal{R}

reluctance

H−1 = J−1·A2 = Wb−1·A
⚀reluctancel
≈ (9.17367113014993×10−2)d H−1

Mathinline
body\overline{\varepsilon}

reciprocal permittivity
elastivity

m·F−1 = N·m2·C−2
⚀elastivitel = ⚀squarelectrelic·influencel
≈ (1.06789481561019×102)d m·F−1

Mathinline
body\varepsilon

permittivity
capacitivity

F·m−1 = N−1·m−2·C2
⚀capacitivitel = ⚀influencelic·squarelectrel
≈ (9.36421813630215×10−3)d F·m−1

Mathinline
body\mu

permeability
inductivity

H·m−1 = N·m2·(A·m)−2 = N·A−2
⚀inductivitel = ⚀squaremagnetelic·influencel
≈ (1.32902348591708×103)d H·m−1

Mathinline
body\overline{\mu}

reciprocal permeability
reluctivity

m·H−1 = N−1·m−2·(A·m)2 = N−1·A2
⚀reluctivitel = ⚀influencelic·squaremagnetel
≈ (7.52432150820839×10−4)d m·H−1

Mathinline
bodyR

resistance

ohm = Ω
⚀resistancel
≈ (3.76730313412×102)d Ω

Mathinline
bodyX

reactance

ohm = Ω
⚀reactancel
≈ (3.76730313412×102)d Ω

Mathinline
bodyZ

impedance

ohm = Ω
impedancel
≈ (3.76730313412×102)d Ω

Mathinline
bodyG

conductance

siemens = S
⚀conductancel
≈ (2.65441872978875×10−3)d S

Mathinline
bodyB

susceptance

siemens = S
⚀susceptancel
≈ (2.65441872978875×10−3)d S

Mathinline
bodyY

admittance

siemens = S
⚀admittancel
≈ (2.65441872978875×10−3)d S

Mathinline
body\rho

resistivity

Ω·m
⚀resistivitel = ⚀resistancel × ⚀lengthel
≈ 3.08997342479801d Ω·m

Mathinline
body\kappa

conductivity

S·m−1
⚀conductivitel = ⚀rconductancel / ⚀lengthel
≈ (3.23627378790603×10−1)d S·m−1